Artificial discontinuities of single-parametric Gröbner bases
نویسندگان
چکیده
Artificial discontinuity is a kind of singularity at a parametric point in computing the Gröbner basis of a specialized parametric ideal w.r.t. a certain term order. When it occurs, though parameters change continuously at the point and the properties of the parametric ideal have no sudden changes, the Gröbner basis will still have a jump at the parametric point. This phenomenon can cause instabilities in computing approximate Gröbner bases. In this paper, we study artificial discontinuities in single-parametric case by proposing a solid theoretical foundation for them. We provide a criterion to recognize artificial discontinuities by comparing the zero point numbers of specialized parametric ideals. Moreover, we prove that for a single-parametric polynomial ideal with some restrictions, its artificially discontinuous specializations (ADS) can be locally repaired to continuous specializations (CS) by the TSV (Term Substitution with Variables) strategy.
منابع مشابه
Pivoting in Extended Rings for Computing Approximate Gröbner Bases
It is well known that in the computation of Gröbner bases arbitrarily small perturbations in the coefficients of polynomials may lead to a completely different staircase, even if the solutions of the polynomial system change continuously. This phenomenon is called artificial discontinuity in Kondratyev’s Ph.D. thesis. We show how such phenomenon may be detected and even “repaired” by using a ne...
متن کاملComprehensive Gröbner bases and von Neumann regular rings
There is a close relation between comprehensive Gröbner bases and non-parametric Gröbner bases over commutative von Neumann regular rings. By this relation, Gröbner bases over a commutative von Neumann regular ring can be viewed as an alternative to comprehensive Gröbner bases. (Therefore, this Gröbner basis is called an “alternative comprehensive Gröbner basis (ACGB)”.) In the first part of th...
متن کاملComprehensive Border Bases for Zero Dimensional Parametric Polynomial Ideals
In this paper, we extend the idea of comprehensive Gröbner bases given by Weispfenning (1992) to border bases for zero dimensional parametric polynomial ideals. For this, we introduce a notion of comprehensive border bases and border system, and prove their existence even in the cases where they do not correspond to any term order. We further present algorithms to compute comprehensive border b...
متن کاملSome Results on Differential Gröbner Bases
We establish some results in the theory of standard bases of differential ideals (also known as differential Gröbner bases) in differential polynomial rings. This work was stimulated by some articles of V. Weispfenning, devoted to the classification of term-orders and parametric Gröbner bases of ideals generated by monomials and binomials.
متن کاملN ov 2 00 6 Minimal Canonical Comprehensive Gröbner System ∗
In this paper we complete the algorithm DISPGB (Discussing Parametric Gröbner Basis) from the last paper by Montes, in order to obtain the Minimal Canonical Comprehensive Gröbner System (MCCGS). Given a parametric ideal, the MCCGS algorithm provides the minimal partition of the parameter space with associated Gröbner bases having the same type of solutions over each segment and provides a canon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Comput.
دوره 46 شماره
صفحات -
تاریخ انتشار 2011